Add like
Add dislike
Add to saved papers

Hypothermia for cardiogenic encephalopathy in neonates with dextro-transposition of the great arteries.

OBJECTIVES: Neonates with dextro-transposition of the great arteries (d-TGA) may experience rapid haemodynamic deterioration and profound hypoxaemia after birth. We report on d-TGA patients with severe acidosis, encephalopathy and their treatment with systemic hypothermia.

METHODS: This study is a single-centre retrospective cohort analysis of newborns with d-TGA.

RESULTS: Ninety-five patients (gestational age ≥35 weeks) with d-TGA and intended arterial switch operation were included. Ten infants (10.5%) with umbilical arterial blood pH > 7.10 experienced profound acidosis (pH < 7.00) within the first 2 h of life. Six of these patients displayed signs of encephalopathy and received therapeutic hypothermia. Apgar scores at 5 min independently predicted the development of neonatal encephalopathy during postnatal transition (unit Odds Ratio 0.17, 95% confidence interval 0.06-0.49, P = 0.001). Infants treated with hypothermia had a more severe preoperative course and required more often mechanical ventilation (100% vs 35%, P = 0.003), treatment with inhaled nitric oxide (50% vs 2.4%, P = 0.002) and inotropic support (67% vs 3.5%, P < 0.001), as compared to non-acidotic controls. The median age at cardiac surgery was 12 (range 6-14) days in cooled infants and 8 (4-59) days in controls (P = 0.088). Postoperative morbidity and total duration of hospitalization were not increased in infants receiving preoperative hypothermia. Mortality in newborns with severe preoperative acidosis was zero.

CONCLUSIONS: Newborn infants with d-TGA have a substantial risk for profound acidosis during the first hours of life. Systemic hypothermia for encephalopathic patients may delay corrective surgery without compromising perioperative outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app