Add like
Add dislike
Add to saved papers

Nondestructive Quantitative Evaluation of Yarns and Fabrics and Determination of Contact Area of Fabrics Using the X-ray Microcomputed Tomography System for Skin-Textile Friction Analysis.

In different mechanical conditions, repetitive friction in combination with pressure, shear, temperature, and moisture leads to skin discomfort and imposes the risks of developing skin injuries such as blisters and pressure ulcers, frequently reported in athletes, military personnel, and in people with compromised skin conditions and/or immobility. Textiles next to skin govern the skin microclimate, have the potential to influence the mechanical contact with skin, and contribute to skin comfort and health. The adhesion-friction theory suggests that contact area is a critical factor to influence adhesion, and therefore, friction force. Friction being a surface phenomenon, most of the studies concentrated on the surface profile or topographic analysis of textiles. This study investigated both the surface profiles and the inner construction of the fabrics through X-ray microcomputed tomographic three-dimensional image analysis. A novel nondestructive method to evaluate yarn and fabric structural details quantitatively and calculate contact area (in fiber area %) experimentally has been reported in this paper. Plain and satin-woven fabrics with different thread densities and made from 100% cotton ring-spun yarns with two different linear densities (40 and 60 Ne) were investigated in this study. The measurements from the tomographic images (pixel size: 1.13 μm) and the fiber area % analysis were in good agreement to comprehend and compare the yarn and fabric properties reported. The fiber area % as reported in this paper can be used to evaluate the skin-textile interfaces and quantitatively determine the contact area under different physical, mechanical, and microclimatic conditions to understand the actual skin-textile interaction during any physical activity or sports. The proposed method can be helpful in engineering textiles to enhance skin comfort and prevent injuries, such as blisters and pressure ulcers, in diversified application areas, including but not limited to, sports and healthcare apparel, military apparel, and firefighter's protective clothing. In addition, the images were capable of precisely evaluating yarn diameters, crimp %, and packing factor as well as fabric thickness, volumetric densities, and cover factors as compared with those obtained from theoretical evaluation and existing classical test methods. All these findings suggest that the proposed new method can reliably be used to quantify the yarn and fabric characteristics, compare their functionality, and understand the structural impacts in an objective and nondestructive way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app