Add like
Add dislike
Add to saved papers

Differential diagnosis between small breast phyllodes tumors and fibroadenomas using artificial intelligence and ultrasound data.

Background: It is challenging to differentiate between phyllodes tumors (PTs) and fibroadenomas (FAs). Artificial intelligence (AI) can provide quantitative information regarding the morphology and textural features of lesions. This study attempted to use AI to evaluate the ultrasonic images of PTs and FAs and to explore the diagnostic performance of AI features in the differential diagnosis of PTs and FAs.

Methods: A total of 40 PTs and 290 FAs <5 cm in maximum diameter found in female patients were retrospectively analyzed. All tumors were segmented by doctors, and the features of the lesions were collated, including circularity, height-to-width ratio, margin spicules, margin coarseness (MC), margin indistinctness, margin lobulation (ML), internal calcification, angle between the long axis of the lesion and skin, energy, grey entropy, and grey mean. The differences between PTs and FAs were analyzed, and the diagnostic performance of AI features in the differential diagnosis of PTs and FAs was evaluated.

Results: Statistically significant differences (P<0.05) were found in the height-to-width ratio, ML, energy, and grey entropy between the PTs and FAs. Receiver operating characteristic (ROC) curve analysis of single features showed that the area under the curve [(AUC) 0.759] of grey entropy was the largest among the four features with statistically significant differences, and the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 0.925, 0.459, 0.978, and 0.190, respectively. When considering the combinations of the features, the combination of height-to-width ratio, margin indistinctness, ML, energy, grey entropy, and internal calcification was the most optimal of the combinations of features with an AUC of 0.868, and a sensitivity, specificity, PPV, and NPV of 0.734, 0.900, 0.982, and 0.316, respectively.

Conclusions: Quantitative analysis of AI can identify subtle differences in the morphology and textural features between small PTs and FAs. Comprehensive consideration of multiple features is important for the differential diagnosis of PTs and FAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app