Comparative Study
Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increased extravascular lung water index (EVLWI) reflects rapid non-cardiogenic oedema and mortality in COVID-19 associated ARDS.

Scientific Reports 2021 June 2
Nearly 5% of patients suffering from COVID-19 develop acute respiratory distress syndrome (ARDS). Extravascular lung water index (EVLWI) is a marker of pulmonary oedema which is associated with mortality in ARDS. In this study, we evaluate whether EVLWI is higher in patients with COVID-19 associated ARDS as compared to COVID-19 negative, ventilated patients with ARDS and whether EVLWI has the potential to monitor disease progression. EVLWI and cardiac function were monitored by transpulmonary thermodilution in 25 patients with COVID-19 ARDS subsequent to intubation and compared to a control group of 49 non-COVID-19 ARDS patients. At intubation, EVLWI was noticeably elevated and significantly higher in COVID-19 patients than in the control group (17 (11-38) vs. 11 (6-26) mL/kg; p < 0.001). High pulmonary vascular permeability index values (2.9 (1.0-5.2) versus 1.9 (1.0-5.2); p = 0.003) suggested a non-cardiogenic pulmonary oedema. By contrast, the cardiac parameters SVI, GEF and GEDVI were comparable in both cohorts. High EVLWI values were associated with viral persistence, prolonged intensive care treatment and in-hospital mortality (23.2 ± 6.7% vs. 30.3 ± 6.0%, p = 0.025). Also, EVLWI showed a significant between-subjects (r = - 0.60; p = 0.001) and within-subjects correlation (r = - 0.27; p = 0.028) to Horowitz index. Compared to non COVID-19 ARDS, COVID-19 results in markedly elevated EVLWI-values in patients with ARDS. High EVLWI reflects a non-cardiogenic pulmonary oedema in COVID-19 ARDS and could serve as parameter to monitor ARDS progression on ICU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app