Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity.

In ischemic acute renal failure oxygen free radicals may mediate injury. In addition, iron appears to play a critical role in hydroxyl radical formation and lipid peroxidation during reperfusion of ischemic kidneys. To determine whether iron may play a similar role in pigment (heme protein)-induced acute renal failure, we studied the effects of the iron chelator deferoxamine in two experimental models of pigment-induced acute renal failure, intramuscular glycerol injection and intravenous hemoglobin infusion without and with concurrent ischemia in the rat. Intramuscular injection of 50% glycerol (5 ml/kg) caused inulin clearance to fall to 0.13 +/- 0.03 (SE) ml/min (normal value, 1.0-1.2 ml/min). Continuous infusion of deferoxamine beginning at the time of glycerol injection significantly attenuated this renal dysfunction. Deferoxamine-treated animals had an inulin clearance of 0.37 +/- 0.06 ml/min (P less than 0.01). Glycerol injection was also associated with significant lipid peroxidation, measured as renal malondialdehyde content. Deferoxamine-treated glycerol-injected rats had renal malondialdehyde content not significantly different from control animals. In another model of heme pigment-induced renal injury, hemoglobin was infused to produce hemoglobinuria. Inulin clearance 1 h after hemoglobin infusion was significantly reduced to 0.84 +/- 0.5 ml/min (P less than 0.025). Infusion of deferoxamine after hemoglobin prevented the hemoglobin-induced decrease in inulin clearance. Thirty minutes of renal ischemia followed by infusion of hemoglobin resulted in more severe renal dysfunction with inulin clearance of 0.54 +/- 0.08 ml/min. Deferoxamine infused at the time of reperfusion attenuated the fall in glomerular filtration rate after ischemia and hemoglobin infusion:inulin clearance 1.04 +/- 0.07 (P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app