Add like
Add dislike
Add to saved papers

Validation of in vivo toenail measurements of manganese and mercury using a portable X-ray fluorescence device.

BACKGROUND AND OBJECTIVE: Toenail metal concentrations can be used as an effective biomarker for exposure to environmental toxicants. Typically toenail clippings are measured ex vivo using inductively coupled plasma mass spectrometry (ICP-MS). X-ray fluorescence (XRF) toenail metal measurements done on intact toenails in vivo could be used as an alternative to alleviate some of the disadvantages of ICP-MS. In this study, we assessed the ability to use XRF to measure toenail metal concentrations in real-time without having to clip the toenails (i.e., in vivo) in two occupational settings for exposure assessment of manganese and mercury.

MATERIALS AND METHODS: The portable XRF method used a 3-min in vivo measurement of toenails prior to clipping and was assessed against ICP-MS measurement of toenail clippings taken immediately after the XRF measurement and work history for a group of welders (n = 16) assessed for manganese exposure and nail salon workers (n = 10) assessed for mercury exposure.

RESULTS AND CONCLUSIONS: We identified that in vivo XRF metal measurements were able to discern exposure to manganese in welders and mercury in nail salon workers. We identified significant positive correlations between ICP-MS of clippings and in vivo XRF measures of both toenail manganese (R = 0.59, p = 0.02) and mercury (R = 0.74, p < 0.001), as well as between in vivo XRF toenail manganese and work history among the welders (R = 0.55, p = 0.03). We identified in vivo XRF detection limits to be 0.5 µg/g for mercury and 2.6 µg/g for manganese. Further work should elucidate differences in the timing of exposure using the in vivo XRF method over toenail clippings and modification of measurement time and x-ray setting to further decrease the detection limit. In vivo portable, XRF measurements can be used to effectively measure toenail Mn and Hg in occupational participants in real-time during study visits and at a fraction of the cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app