Add like
Add dislike
Add to saved papers

Loss of SMARCB1 promotes autophagy and facilitates tumour progression in chordoma by transcriptionally activating ATG5.

Cell Proliferation 2021 October 21
OBJECTIVES: SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) loss is associated with a poor prognosis in chordoma, while the mechanism remains largely unclear. Here, we aim to explore the function and regulatory mechanisms of SMARCB1 in chordoma.

MATERIALS AND METHODS: The effect of SMARCB1 on chordoma cells was investigated in vitro and in vivo. Chromatin immunoprecipitation (ChIP) sequencing was used to investigate the mechanisms of SMARCB1 in chordoma. The association between SMARCB1 and autophagy was validated by Western blot, immunofluorescence and transmission electron microscopy. In addition, the ATG5 expression in chordoma tissue was assessed using immunohistochemistry and correlated with patient survival.

RESULTS: SMARCB1 inhibited the malignant phenotype of chordoma cells in vitro and in vivo, supporting a tumour suppressor role of SMARCB1 in chordoma. ATG5-mediated autophagy was identified as a potential downstream pathway of SMARCB1. Mechanistically, SMARCB1 bound directly to the ATG5 promoter and epigenetically inhibited its transcription, which decreased ATG5 expression and impaired autophagy. Additionally, autophagy inhibitor chloroquine had a potential anti-cancer effect on chordoma cells in vitro. Moreover, high ATG5 expression was observed in recurrent chordoma patients, which independently correlated with adverse outcomes.

CONCLUSIONS: Taken together, our results revealed that the SMARCB1/ATG5 axis is a promising therapeutic target for chordoma and autophagy inhibitors may be effective agents for chordoma treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app