Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Toward rebalancing blood pressure instability after spinal cord injury with spinal cord electrical stimulation: A mini review and critique of the evolving literature.

High-level spinal cord injury commonly leads to blood pressure instability. This manifests clinically as orthostatic hypotension (OH), where blood pressure can drop to the point of loss of consciousness, and autonomic dysreflexia (AD), where systolic blood pressure can climb to over 300 mmHg in response to an unperceived noxious stimulus. These blood pressure fluctuations can occur multiple times a day, contributing to increased vessel shear stress and heightened risk of cardiovascular disease. The pathophysiology of both of these conditions is rooted in impairments in regulation of spinal cord sympathetic preganglionic neurons, which control blood pressure by mediating vascular resistance and catecholamine release. Recently, spinal cord electrical stimulation has provided evidence that it may modulate these blood pressure imbalances. Early proposed mechanisms suggest activation of spinal cord dorsal horn neurons that ultimately act upon the sympathetic preganglionic neuronal pathways. For OH, spinal cord stimulation likely induces local activation of these neurons to generate baseline sympathetic tone and accompanying vasoconstriction. The mechanisms for spinal stimulation regulating AD are less clear, though some suggest it activates inhibitory circuits to dampen the overactive sympathetic response. While questions remain, spinal cord electrical stimulation is an intriguing new modality that may restore blood pressure regulation following spinal cord injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app