JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Crackle and wheeze detection in lung sound signals using convolutional neural networks.

Respiratory diseases are among the leading causes of death worldwide. Preventive measures are essential to avoid and increase the odds of a successful recovery. An important screening tool is pulmonary auscultation, an inexpensive, noninvasive and safe method to assess the mechanics and dynamics of the lungs. On the other hand, it is a difficult task for a human listener since some lung sound events have a spectrum of frequencies outside of the human hearing ability. Thus, computer assisted decision systems might play an important role in the detection of abnormal sounds, such as crackle or wheeze sounds. In this paper, we propose a novel system, which is not only able to detect abnormal lung sound events, but it is also able to classify them. Furthermore, our system was trained and tested using the publicly available ICBHI 2017 challenge dataset, and using the metrics proposed by the challenge, thus making our framework and results easily comparable. Using a Mel Spectrogram as an input feature for our convolutional neural network, our system achieved results in line with the current state of the art, an accuracy of 43%, and a sensitivity of 51%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app