Add like
Add dislike
Add to saved papers

Engineering a Bioactive Hybrid Coating for In Vitro Corrosion Control of Magnesium and Its Alloy.

Magnesium (Mg) and its alloys are promising biodegradable metallic implant materials. However, their clinical applications are limited by their fast corrosion rate in the biological environment. In this work, with an outlook to improve the in vitro corrosion resistance of Mg and WE43 Mg alloy, a layer-by-layer interfacially engineered anticorrosive and bioactive coating consisting of a natural oxide lower layer, hydroxyapatite (HA) middle layer, and silk fibroin (SF) top layer was fabricated and investigated. Anodization was used to create natural oxide layer induced microroughness on substrates. The electrochemically deposited HA layer improved the surface microroughness and microhardness but significantly decreased Mg ion release, hydrogen gas evolution, and weight loss in simulated body fluid. The spin-coated SF layer further decreased hydrophilicity, in vitro degradation, and corrosion rate. The nonspecific and specific intermolecular interactions between fabricated layers along with their mechanical interlocking interface contributed to improved adhesion strength and integrity of the coating. The SF+HA-coated samples showed enhanced degradation and corrosion resistance due to a synergistic effect of the underlying HA layer, hindering the ingress of aggressive ions and the top hydrophobic SF layer, preventing the ingress of corrosive solution. The SF+HA-coated Mg and WE43 Mg alloy samples exhibited 50 and 26 times decreased corrosion rate, respectively, compared to uncoated samples. Moreover, in vitro cytotoxicity and cell culture studies using a mouse fibroblast cell showed that the SF+HA hybrid coating improved the cell viability, attachment, and proliferation, with cells exhibiting elongated morphology on coated samples as compared to a round shape on uncoated samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app