JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils.

A new connective tissue protein, which we call fibrillin, has been isolated from the medium of human fibroblast cell cultures. Electrophoresis of the disulfide bond-reduced protein gave a single band with an estimated molecular mass of 350,000 D. This 350-kD protein appeared to possess intrachain disulfide bonds. It could be stained with periodic acid-Schiff reagent, and after metabolic labeling, it contained [3H]glucosamine. It could not be labeled with [35S]sulfate. It was resistant to digestion by bacterial collagenase. Using mAbs specific for fibrillin, we demonstrated its widespread distribution in the connective tissue matrices of skin, lung, kidney, vasculature, cartilage, tendon, muscle, cornea, and ciliary zonule. Electron microscopic immunolocalization with colloidal gold conjugates specified its location to a class of extracellular structural elements described as microfibrils. These microfibrils possessed a characteristic appearance and averaged 10 nm in diameter. Microfibrils around the amorphous cores of the elastic fiber system as well as bundles of microfibrils without elastin cores were labeled equally well with antibody. Immunolocalization suggested that fibrillin is arrayed periodically along the individual microfibril and that individual microfibrils may be aligned within bundles. The periodicity of the epitope appeared to match the interstitial collagen band periodicity. In contrast, type VI collagen, which has been proposed as a possible microfibrillar component, was immunolocalized with a specific mAb to small diameter microfilaments that interweave among the large, banded collagen fibers; it was not associated with the system of microfibrils identified by the presence of fibrillin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app