Add like
Add dislike
Add to saved papers

Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration.

CRISPR/Cas9-mediated site-specific insertion of exogenous genes holds potential for clinical applications. However, it is still infeasible because homologous recombination (HR) is inefficient, especially for non-dividing cells. To overcome the challenge, we report that a homology-independent targeted integration (HITI) strategy is used for permanent integration of high-specificity-activity Factor IX variant (F9 Padua, R338L) at the albumin (Alb) locus in a novel hemophilia B (HB) rat model. The knock-in efficiency reaches 3.66%, as determined by droplet digital PCR (ddPCR). The clotting time is reduced to a normal level four weeks after treatment, and the circulating FIX level is gradually increased up to 52% of the normal level over nine months even after partial hepatectomy, demonstrating the amelioration of hemophilia. Through primer-extension-mediated sequencing (PEM-seq), no significant off-target effect is detected. This study not only provides a novel model for HB but also identifies a promising therapeutic approach for rare inherited diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app