Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

In Vivo Imaging to Measure Spontaneous Lung Metastasis of Orthotopically-injected Breast Tumor Cells.

Metastasis remains the primary cause of cancer-related death. The succession of events that characterize the metastatic cascade presents multiple opportunities for therapeutic intervention, and the ability to accurately model them in mice is critical to evaluate their effects. Here, a step-by-step protocol is presented for the establishment of orthotopic primary breast tumors and the subsequent monitoring of the establishment and growth of metastatic lesions in the lung using in vivo bioluminescence imaging. This methodology allows for the evaluation of treatment or its biological effects along the entire range of metastatic development, from primary tumor escape to outgrowth in the lungs. Breast orthotopic tumors are generated in mice via injection of a luciferase-labeled cell suspension in the 4th mammary gland. Tumors are allowed to grow and disseminate for a specific amount of time and are then surgically resected. Upon resection, spontaneous lung metastasis is detected, and the growth over time is monitored using in vivo bioluminescence imaging. At the desired experimental endpoint, lung tissue can be collected for downstream analysis. The treatment of established, clinically evident metastasis is critical to improve outcomes for stage IV cancer patients, and it can be evaluated through tail vein models of experimental lung metastasis. However, metastatic dissemination occurs early in breast cancer, and many patients have latent, subclinical disseminated disease after surgery. Utilization of spontaneous models such as this one provides the opportunity to study the whole spectrum of the disease, especially the systemic effects driven by treatment of the primary tumor such as pre-metastatic niche priming, and evaluate treatments on dormant and subclinical disease after surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app