Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Dose-dependent pharmacokinetics of acetaminophen: evidence of glutathione depletion in humans.

The time course of excretion of acetaminophen and its metabolites in urine was determined in eight healthy adults (seven men and one woman) who ingested 1 gm of the drug and collected timed urine samples for 24 hours. The mean time of peak excretion rate was 1.3 to 3.7 hours for acetaminophen, its glucuronide, sulfate, cysteine, mercapturate, and methoxy metabolites but 13.5 hours for methylthioacetaminophen. The mean half-life of acetaminophen was 3.1 hours and the mean half-life of the metabolites other than methylthioacetaminophen ranged from 4.1 to 5.7 hours. The half-life of methylthiometabolite could not be determined because of its very late peak time. In a second study the effect of dose on the clearance of acetaminophen was determined in nine healthy adult subjects (eight men and one woman) who received doses of 0.5 and 3 gm acetaminophen on separate occasions, separated by 4 to 10 days. The renal clearance of acetaminophen and the formation clearances of the sulfate, glutathione, and catechol metabolites were lower (by 38%, 41%, 35%, and 46%, respectively) at the higher dose. The renal clearance of acetaminophen sulfate and glucuronide conjugates were not different between doses. In a third study (10 men), 10 gm N-acetylcysteine was found to increase the formation clearance of the sulfate conjugate by 27% and that of the glutathione conjugate by 10%. The data suggest that the hepatic supply of reduced glutathione and 3'-phosphoadenosine 5'-phosphosulfate begins to be depleted over the range of 0.5 to 3 gm acetaminophen and that the depletion is overcome by the administration of N-acetylcysteine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app