Add like
Add dislike
Add to saved papers

Encephalopathy of thiamine deficieny: studies of intracerebral mechanisms.

Thiamine-deficient encephalopathy is characterized by morphologic lesions in the brainstem and less extensively in the cerebellum, but the early neurologic signs reverse rapidly and fully with thiamine, indicating a metabolic disorder. The suggested causal mechanisms of the encephalopathy involve two thiamine-dependent enzymes: (a) impairment of pyruvate decarboxylase activity with decreased cerebral energy (ATP) synthesis, and (b) reduction of transketolase activity with possible impairment of the hexose monophosphate shunt and subsequent decrease in NADPH formation. The latter may be important in maintaining glutathione in a reduced form (GSH), which apparently functions by keeping enzymes in a reduced (active) conformation. To examine some of these postulated mechanisms, in this study we measured pyruvate decarboxylase and transketolase activity, lactate, ATP and GSH levels in the cerebral cortex, cerebellum, and brainstem, and thiamine concentration in whole brain of rats with diet-induced low thiamine encephalopathy. Pair-fed and normally fed asymptomatic control animals were similarly investigated. To assess the functional importance of some of our results, we repeated the studies in rats, immediately (16-36 hr) after reversal of the neurological signs with thiamine administration. THE DATA OBTAINED LED TO THE FOLLOWING CONCLUSIONS: (a) Brain contains a substantial reserve of thiamine in that thiamine level has to fall to below 20% of normal before the onset of overt encephalopathy and an increase in brain thiamine to only 26% of normal results in rapid reversal of neurologic signs. (b) Both cerebral transketolase and pyruvate decarboxylase activities are impaired in low thiamine encephalopathy and the abnormality in the pyruvate decarboxylase is reflected in a rise in brain lactate. These biochemical abnormalities occur primarily in the brainstem and cerebellum, the sites of the morphologic changes. (c) Although the fall in cerebral transketolase is about twofold greater than that of pyruvate decarboxylase activity during encephalopathy, both enzymes rise on reversal of neurologic signs and the degree of the transketolase rise is slight. Accordingly, this study cannot ascertain the relative functional importance of these two pathways in the induction of the encephalopathy. The data suggest, however, that the depression of transketolase is not functionally important per se, but may only be an index of some other critical aspect of the hexose monophosphate shunt. (d) The normal cerebral ATP concentration and small GSH fall during encephalopathy, with little GSH rise on reversal of neurologic signs, suggest that a depletion of neither substance is instrumental in inducing thiamine-deficient encephalopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app