Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Input impedance of the cochlea in cat.

Tones were delivered directly to the stapes in anesthetized cats after removal of the tympanic membrane, malleus, and incus. Measurements were made of the complex amplitudes of the sound pressure on the stapes PS, stapes velocity VS, and sound pressure in the vestibule PV. From these data, acoustic impedance of the stapes and cochlea ZSC delta equal to PS/US, and of the cochlea alone ZC delta equal PV/US were computed (US delta equal to volume velocity of the stapes = VS X area of the stapes footplate). Some measurements were made on modified preparations in which (1) holes were drilled into the vestibule and scala tympani, (2) the basal end of the basilar membrane was destroyed, (3) cochlear fluid was removed, or (4) static pressure was applied to the stapes. For frequencies between 0.5 and 5 kHz, ZSC approximately equal to ZC; this impedance is primarily resistive ([ZC] approximately equal to 1.2 X 10(6) dyn-s/cm5) and is determined by the basilar membrane and cochlear fluids. For frequencies below 0.3 kHz, [ZSC] greater than [ZC] and ZSC is primarily determined by the stiffness of the annular ligament; drying of the ligament or changes in the static pressure difference across the footplate can produce large changes in [ZSC]. For frequencies below 30 Hz, ZC is apparently controlled by the stiffness of the round-window membrane. All of the results can be represented by an network of eight lumped elements in which some of the elements can be associated with specific anatomical structures. Computations indicate that for the cat the sound pressure at the input to the cochlea at behavioral threshold is constant between 1 and 8 kHz, but increases as frequency is decreased below 1 kHz. Apparently, mechanisms within the chochlea (or more centrally) have an important influence on the frequency dependence of behavioral threshold at low frequencies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app