Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Spinal cord pathways mediating somatosensory evoked potentials.

Using a CO2 laser, discrete thoracic spinal cord lesions were made in cats anesthetized with ketamine and xylazine (Rompun). Differences in cortical somatosensory evoked potentials (SEP's) produced with high-intensity stimulation (20 times the motor threshold) of each posterior tibial nerve determined for nine different combinations of unilateral spinal cord lesions. The results of these studies show that nerve fibers in the ipsilateral dorsal column, the ipsilateral dorsal spinocerebellar tract, and the contralateral ventrolateral tracts with respect to the side of leg stimulation, contribute to cortical SEP's. A lesion of the dorsal spinocerebellar tract affected only the early waves (less than 30 msec) of the SEP from leg stimulation ipsilateral to the side of the lesion, whereas a solitary lesion of the ventrolateral tract caused changes primarily in the amplitude of later waves (greater than 30 msec) of the SEP produced by contralateral leg stimulation. Lesions involving one-half of the dorsal column caused changes in the amplitude of both the early and late waves produced by stimulation ipsilateral to the side of the lesion. The effects of various combinations of lesions on the cortical SEP's were not additive, which indicates significant interaction between afferent pathways. These findings suggest that high-intensity peripheral nerve stimulation, which activates both C and A fibers, could be used intraoperatively to assess spinal cord function with more accuracy than the current practice of using a stimulus strength of twice the motor threshold. The importance of using anesthetic agents that do not depress cortical activity (which may affect the later components of the SEP) is also emphasized.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app