Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Pathogenetic studies of hexane and carbon disulfide neurotoxicity.

Two commonly employed solvents, n-hexane and carbon disulfide (CS2), although chemically dissimilar, result in identical neurofilament-filled swellings of the distal axon in both the central and peripheral nervous systems. Whereas CS2 is itself a neurotoxicant, hexane requires metabolism to the gamma-diketone, 2,5-hexanedione (HD). Both HD and CS2 react with protein amino functions to yield initial adducts (pyrrolyl or dithiocarbamate derivatives, respectively), which then undergo oxidation or decomposition to an electrophile (oxidized pyrrole ring or isothiocyanate), that then reacts with protein nucleophiles to result in protein cross-linking. It is postulated that progressive cross-linking of the stable neurofilament during its anterograde transport in the longest axons ultimately results in the accumulation of neurofilaments within axonal swellings. Reaction with additional targets appears to be responsible for the degeneration of the axon distal to the swellings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app