CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

A mutation of the glucocorticoid receptor in primary cortisol resistance.

The precise molecular abnormalities that cause primary cortisol resistance have not been completely described. In a subject with primary cortisol resistance we have observed glucocorticoid receptors (hGR) with a decreased affinity for dexamethasone. We hypothesize that a mutation of the hGR glucocorticoid-binding domain is the cause of cortisol resistance. Total RNA isolated from the index subject's mononuclear leukocytes was used to produce first strand hGR cDNAs, and the entire hGR cDNA was amplified in segments and sequenced. At nucleotide 2,317 we identified a homozygous A for G point mutation that predicts an isoleucine (ATT) for valine (GTT) substitution at amino acid 729. When the wild-type hGR and hGR-Ile 729 were expressed in COS-1 cells and assayed for [3H]-Dexamethasone binding, the dissociation constants were 0.799 +/- 0.068 and 1.54 +/- 0.06 nM (mean +/- SEM) (P < 0.01), respectively. When the wild-type hGR and hGR-Ile 729 were expressed in CV-1 cells that were cotransfected with the mouse mammary tumor virus long terminal repeat fused to the chloramphenicol acetyl transferase (CAT) gene, the hGR-Ile 729 conferred a fourfold decrease in apparent potency on dexamethasone stimulation of CAT activity. The isoleucine for valine substitution at amino acid 729 impairs the function of the hGR and is the likely cause of primary cortisol resistance in this subject.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app