Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Non-enzymatic glycation of peripheral nerve proteins in human diabetics.

We have measured non-enzymatic glycation of proteins in the cytoskeletal and myelin fractions of nerve fascicles from human sural nerves obtained from diabetic and non-diabetic amputation specimens. Levels of the early reversible glycation adduct, measured as furosine did not differ significantly between diabetics and controls in either protein fraction. Pentosidine levels per unit protein were significantly elevated in diabetics relative to controls in both cytoskeletal (5.96 vs 4.47; p = 0.037) and myelin protein (1.35 vs 0.69; p = 0.023) fractions. Protein cross-linkage in the cytoskeletal fraction, probably due to AGEs, was also higher in diabetics than controls (504 vs 349; p = 0.057). These results show that increased AGE accumulation occurs in cytoskeletal, as well as myelin, peripheral nerve proteins in diabetics. This suggests a possible new mechanism contributing to the axonal degeneration polyneuropathy of diabetes which is based upon irreversible glycation of axonal cytoskeletal proteins causing their cross-linkage and altered function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app