Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypokalemic periodic paralysis and the dihydropyridine receptor (CACNL1A3): genotype/phenotype correlations for two predominant mutations and evidence for the absence of a founder effect in 16 caucasian families.

Hypokalemic periodic paralysis (hypoPP) is an autosomal dominant disorder belonging to a group of muscle diseases involving the abnormal function of ion channels. This group of muscle diseases also comprises hyperkalemic periodic paralysis and paramyotonia congenita, both sodium-channel diseases, and myotonia congenita, a chloride-channel disorder. HypoPP is characterized by acute attacks of muscle weakness concomitant with a fall in blood potassium levels. We recently localized the hypoPP locus (hypoPP1) to chromosome 1q31-32, in an interval where the alpha 1 subunit of the dihydropyridine receptor calcium channel (CACNL1A3) also maps. Subsequently, deleterious mutations in the voltage-sensor segment S4 were found, establishing the dihydropyridine receptor CACNL1A3 as the causative gene for hypoPP. In this paper, we report the study of 16 hypoPP families of Caucasian origin. We found only two mutations--Arg528His and Arg1239His--that cosegregated with hypoPP, each in half of the families. Analysis of the clinical characteristics of both groups of families demonstrated that incomplete penetrance is a distinctive feature of the Arg528His mutation. Using dinucleotide repeats contained within or close to the dihydropyridine receptor gene, in conjunction with evidence of a de novo Arg1239His mutation, we show that a founder effect is unlikely to account for the two predominant mutations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app