JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy.

Gastroenterology 1994 November
BACKGROUND/AIMS: Recent in vivo studies using proton magnetic resonance (1H-MR) spectroscopy showed low levels of myo-inositol in the brain in hepatic encephalopathy; the pathogenetic relevance of this observation is unclear.

METHODS: Myo-inositol and glutamine levels in the brain were studied in vivo by 1H-MR spectroscopy in patients with hypo-osmolarity and hepatic encephalopathy.

RESULTS: A patient with severe plasma hypo-osmolarity (222 mOsm/L) had almost undetectable signals for myo-inositol and glutamine/glutamate in the brain. Both signals reappeared after normalization of plasma osmolarity, suggesting that both myo-inositol and glutamine were released as organic osmolytes from the brain. A decreased cerebral myo-inositol signal is also found in low-grade hepatic encephalopathy but is accompanied by an increased glutamine signal. Cirrhotics without hepatic encephalopathy have near-normal inositol signals, and patients with acquired immunodeficiency syndrome encephalopathy have increased inositol signals.

CONCLUSIONS: The 1H-MR spectroscopic myo-inositol signal in the human brain predominantly reflects an osmosensitive inositol pool. It is hypothesized that its depletion in latent hepatic encephalopathy points to a disturbance of cell volume homeostasis in the brain as an early pathogenetic event. This may partly be caused by a hyperammonemia-induced glutamine accumulation in the brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app