Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ablation rates and surface ultrastructure of 193 nm excimer laser keratectomies.

PURPOSE: To determine whether photorefractive keratectomy can be performed at lower energies than are currently employed in clinical trials.

METHODS: Fresh pig corneas were ablated using a clinical excimer laser to study the effects of various energy densities (100-200 mJ/cm2) and beam diameters on ablation rates and on the surface ultrastructure of the ablated cornea.

RESULTS: A 20-mJ increase in energy density was associated with a 0.03 micron per pulse increase in the ablation rate. A nearly linear increase in the pseudomembrane thickness occurred with increasing energy densities (r2 = 0.83) or decreasing ablation area diameter (r2 = 0.86).

CONCLUSIONS: Our findings suggest that fluences less than those currently used in clinical trials (160-180 mJ) are capable of ablating tissue while producing thinner electron-dense pseudomembranes on the corneal surface. The relationship between pseudomembrane thickness and clinical factors such as reepithelialization and postoperative haze remains to be determined. Operating at lower fluences does have the advantages of allowing larger diameter ablations, reducing possible shockwave damage, and reducing the maintenance requirements for the laser.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app