Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pulmonary CO2 elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation.

We examined end-tidal CO2 tension (PETCO2) and pulmonary CO2 elimination of CO2 (VECO2) during CO2 insufflation under general anesthesia for three surgical procedures: gynecologic laparoscopy (intraperitoneal CO2 insufflation for 43 +/- 4 min), laparoscopic cholecystectomy (intraperitoneal CO2 insufflation for 125 +/- 14 min), and pelviscopy (extraperitoneal CO2 insufflation for 45 +/- 3 min). All patients (10 in each group) underwent controlled mechanical ventilation. Oxygen consumption (VO2) and VECO2 were measured at 2-min intervals by a system using a mass spectrometer. For the three surgical procedures, VO2 remained stable, whereas VECO2 and PETCO2 increased in parallel from the 8th to the 10th min after the start of CO2 insufflation. A plateau was reached 10 min later in patients having intraperitoneal insufflation, whereas VECO2 and PETCO2 continued to increase slowly throughout CO2 insufflation during pelviscopy. During pelviscopy, the maximum increase in VECO2 and PETCO2 (76 +/- 5% and 71 +/- 7%) was significantly more pronounced than that observed during cholecystectomy (25 +/- 4% and 25 +/- 4%) and gynecologic laparoscopy (15 +/- 3% and 12 +/- 2%). The authors conclude that CO2 diffusion into the body is more marked during extraperitoneal than during intraperitoneal CO2 insufflation but is not influenced markedly by the duration of intraperitoneal insufflation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app