JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synthesis and biological evaluation of radioiodinated N-2-(4-piperidyl)ethyl benzamides.

Three iodinated benzamides, 5-7, analogues of the potent acetylcholinesterase inhibitor 1-benzyl-4-[N-[4'-(benzylsulfonyl) benzoyl-N-methylamino]ethyl]piperidine (2), were synthesized and evaluated as potential anticholinesterase agents. All three compounds were found to be three orders of magnitude less potent than the parent compound. However, receptor screening revealed that compounds 5-7 exhibit nanomolar affinity for the sigma binding site. Both [125I]5 and [125I]7 were synthesized and evaluated in rats. Following the intravenous administration of [125I]5 into rats, 1.59% of the injected dose was found in the rat brain within 5 min. The level of radioactivity in the brain remained steady for 2 h, the duration of the study. In contrast, 0.42% of the injected dose was detected in the rat brain following the i.v. injection of [125I]7. Coadministration of either [125I]5 or [125I]7 with 0.5 mumol/kg of haloperidol resulted in a 56-73% reduction in the level of radioactivity in the rat brain, suggesting that these compounds bind to the sigma binding site in vivo. Planar imaging studies with [123I]5 revealed significant accumulation of radioactivity within the monkey brain, with a half-life of 6 h. Compound [123I]5 may be potentially useful for studying sigma receptor distribution in the human brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app