CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Insulin-like growth factor I (rhIGF-I) as a therapeutic agent for hyperinsulinemic insulin-resistant diabetes mellitus.

Insulin resistance is one of the major underlying abnormalities in NIDDM, however, its pathophysiologic mechanisms are not well understood. Many clues about the mechanisms of insulin action have come from patients with the most severe forms of insulin resistance, including those with genetic abnormalities in the insulin signal transduction cascade. We used rhIGF-I as a probe to differentiate insulin and IGF-I action and to study the therapeutic potential of IGF in states of insulin resistance. To date, we have studied six subjects with varying phenotypes of severe insulin resistance but without mutations in the insulin receptor itself. All subjects underwent baseline physiologic monitoring to quantitate carbohydrate tolerance, insulin secretion, and insulin action prior to receiving rhIGF-I at 100 micrograms/kg body wt s.c. bid for 1 month with interval testing of glycemic control and insulin sensitivity. None of the six subjects noted significant side effects from the rhIGF-I. Four of the six subjects had overt diabetes during control testing; three of these subjects demonstrated normalization of fasting and postprandial blood glucose concentrations during rhIGF-I administration on no other therapy. In the fourth patient, insulin requirements and fasting hypertriglyceridemia decreased without improvement in glycemic control. The two subjects with normal glucose tolerance (two sisters with congenital lipodystrophy) maintained normal glucose tolerance at dramatically lower insulin levels and had a dramatic reduction in triglyceride levels. The efficacy of IGF-I continued to increase over the duration of the study.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app