Add like
Add dislike
Add to saved papers

Treatment of lumbar spinal stenosis by extensive unilateral decompression and contralateral autologous bone fusion: operative technique and results.

A new surgical technique for the treatment of lumbar spinal stenosis features extensive unilateral decompression with undercutting of the spinous process and, to preserve stability, uses contralateral autologous bone fusion of the spinous processes, laminae, and facets. The operation was performed in 29 patients over a 19-month period ending in December of 1991. All individuals had been unresponsive to conservative treatment and presented with low-back pain in addition to signs and symptoms consistent with neurogenic claudication or radiculopathy. Nine had undergone previous lumbar decompressive surgery. The minimum and mean postoperative follow-up times were 2 and 2 1/2 years, respectively. The mean patient age was 64 years; only two patients were younger than 50 years of age. Of the patients with neurogenic claudication, 69% reported complete pain relief at follow-up review. Of those with radicular symptoms, 41% had complete relief and 23% had mild residual pain that was rated 3 or less on a pain-functionality scale of 0 to 10. For the entire sample, this surgery decreased pain from 9.2 to 3.3 (p < 0.0001) on the scale. Sixty-nine percent of patients were satisfied with surgery. Low-back pain was significantly relieved in 62% of all patients (p < 0.0001). Low-back pain relief correlated negatively with number of levels decompressed (p < 0.05). To assess fusion, follow-up flexion/extension radiographs were obtained, and no motion was detected at the surgically treated levels in any patient. The results suggest that this decompression procedure safely and successfully treats not only the radicular symptoms caused by lateral stenosis but also the neurogenic claudication symptoms associated with central stenosis. In addition, the procedure, by using contralateral autologous bone fusion along the laminae and spinous processes, can preserve stability without instrumentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app