JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes.

Cell 1996 June 15
Homologous recombination in embryonal stem cells has been used to produce a fusion oncogene, thereby mimicking chromosomal translocations that frequently result in formation of tumor-specific fusion oncogenes in human malignancies. AF9 sequences were fused into the mouse Mll gene so that expression of the Mll-AF9 fusion gene occurred from endogenous Mll transcription control elements, as in t(9;11) found in human leukemias. Chimeric mice carrying the fusion gene developed tumors, which were restricted to acute myeloid leukemias despite the widespread activity of the Mll promoter. Onset of perceptible disease was preceded by expansion of ES cell derivatives in peripheral blood. This novel use of homologous recombination formally proves that chromosomal translocations contribute to malignancy and provides a general strategy to create fusion oncogenes for studying their role in tumorigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app