Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Association of N-acetylgalactosamine-6-sulfate sulfatase with the multienzyme lysosomal complex of beta-galactosidase, cathepsin A, and neuraminidase. Possible implication for intralysosomal catabolism of keratan sulfate.

N-Acetylgalactosamine-6-sulfate sulfatase (GALNS) catalyzes the first step of intralysosomal keratan sulfate (KS) catabolism. In Morquio type A syndrome GALNS deficiency causes the accumulation of KS in tissues and results in generalized skeletal dysplasia in affected patients. We show that in normal cells GALNS is in a 1.27-MDa complex with three other lysosomal hydrolases: beta-galactosidase, alpha-neuraminidase, and cathepsin A (protective protein). GALNS copurifies with the complex by different chromatography techniques: affinity chromatography on both cathepsin A-binding and beta-galactosidase-binding columns, gel filtration, and chromatofocusing. Anti-human cathepsin A rabbit antiserum coprecipitates GALNS together with cathepsin A, beta-galactosidase, and alpha-neuraminidase in both a purified preparation of the 1. 27-MDa complex and crude glycoprotein fraction from human placenta extract. Gel filtration analysis of fibroblast extracts of patients deficient in either beta-galactosidase (beta-galactosidosis) or cathepsin A (galactosialidosis), which accumulate KS, demonstrates that the 1.27-MDa complex is disrupted and that GALNS is present only in free homodimeric form. The GALNS activity and cross-reacting material are reduced in the fibroblasts of patients affected with galactosialidosis, indicating that the complex with cathepsin A may protect GALNS in the lysosome. We suggest that the 1.27-MDa complex of lysosomal hydrolases is essential for KS catabolism and that the disruption of this complex may be responsible for the KS accumulation in beta-galactosidosis and galactosialidosis patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app