JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Crosslinking kinetics of the human transglutaminase, factor XIII[A2], acting on fibrin gels and gamma-chain peptides.

Biochemistry 1997 Februrary 5
Factor XIII is the terminal enzyme of the coagulation cascade which serves to rapidly crosslink the adjacent gamma-chain C-termini of fibrin clots. In vivo, this process is initiated by the proteolytic action of thrombin which simultaneously converts both soluble fibrinogen to fibrin and activates zymogen FXIII; fibrin then spontaneously polymerizes to form a gel which activated FXIII stabilizes through crosslinking. Due to the kinetic complexity and the difficulty of investigating gel phase reactions, methods employing pre-activation of recombinant human Factor XIII (rFXIII[A'2]) were developed to effectively decouple these reactions. By utilizing these methods, the kinetic parameters of gamma-chain crosslinking in fibrin gels could be determined by both initial rate and integrated rate techniques under physiologically relevant conditions. The crosslinking of the gamma-chain of fibrin gels could be described by apparent Michaelis kinetics with K(m)(app) = 6.2 microM, kcat = 1872 min-1, and Ksp = 302 min-1 microM-1 for a fibrin gamma-chain monomer of M(r) = 170000 Da. In contrast, both the crosslinking rates of alpha-chains within fibrin gels (Ksp = 0.38 min-1 microM-1: Bishop et al. (1993)) and the crosslinking of a soluble synthetic peptide containing the unique gamma-chain fibrin crosslinking site (Ksp = 0.030 min-1 microM-1) could not be shown to saturate and gave apparent first-order rates with respect to rFXIII[A'2]. These observations coupled with the large differences in the turnover rates (approximately 10(4)) suggest two likely mechanisms for FXIII[A'2]-substrate interactions: (1) random (or independent) binding of non- or weakly interacting substrate pairs imposes a high entropic barrier (i. e., delta Gbinding) to the formation of a productive catalytic complex, e.g., for soluble gamma-chain peptides and the flexible alpha-chains within fibrin, and (2) binding to an oriented substrate pair effectively lowers the entropic barrier to formation of a Michaelis complex and thus greatly enhances the rate of catalysis, e.g., for gamma-chain pairs within the fibrin fibrils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app