COMPARATIVE STUDY
IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

TGF-beta 1, TGF-beta 2, and TGF-beta 3 exhibit distinct patterns of expression during cranial suture formation and obliteration in vivo and in vitro.

Cranial sutures function as bone growth centers while themselves remaining unossified. Rat frontonasal sutures become obliterated by neonatal day 21 (N21), while coronal sutures do not fuse over the life of the animal. Coronal sutures induced to undergo osseous obliteration in vitro after removal of the dura mater were found to require soluble, heparin-binding factors present in dura mater to resist osseous obliteration. Transforming growth factor beta 1 (TGF-beta 1), beta 2, and beta 3, heparin-binding factors known to regulate bone cell proliferation and differentiation, were considered likely candidates. The presence and distribution of these factors in calvarial tissues both in vivo and in vitro were established by immunohistochemical analysis, while reverse transcription followed by polymerase chain reaction (RT/PCR) was employed to determine the presence of transcripts for these factors in mRNA isolated from microdissected dura mater. Results indicated that the presence of TGF-beta 1 and TGF-beta 2 were associated with developing coronal and frontonasal sutures, and that the continued presence of these factors was associated with osseous obliteration of the frontonasal suture. However, increased TGF-beta 3 immunoreactivity was associated with the coronal suture remaining unossified. RT/PCR demonstrated the presence of transcripts for TGF-beta 1, beta 2, and beta 3 in dural tissues isolated from rat calvaria. These data support the notion of a role for TGF-beta s in regulating cranial suture morphogenesis and establish the in vitro model as a valid system for examining mechanisms by which growth factors regulate both suture morphogenesis and bone growth at the suture site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app