JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct.

During antidiuresis, increases in vasopressin (AVP)-elicited osmotic water permeability in the terminal inner medullary collecting duct (tIMCD) raise luminal calcium concentrations to levels (> or = 5 mM) above those associated with the formation of calcium-containing precipitates in the urine. Calcium/polycation receptor proteins (CaRs) enable cells in the parathyroid gland and kidney thick ascending limb of Henle to sense and respond to alterations in serum calcium. We now report the presence of an apical CaR in rat kidney tIMCD that specifically reduces AVP-elicited osmotic water permeability when luminal calcium rises. Purified tIMCD apical membrane endosomes contain both the AVP-elicited water channel, aquaporin 2, and a CaR. In addition, aquaporin 2-containing endosomes also possess stimulatory (G(alpha q)/G(alpha 11) and inhibitory (G(alpha i1, 2, and 3)) GTP binding proteins reported previously to interact with CaRs as well as two specific isoforms (delta and zeta) of protein kinase C. Immunocytochemistry using anti-CaR antiserum reveals the presence of CaR protein in both rat and human collecting ducts. Together, these data provide support for a unique tIMCD apical membrane signaling mechanism linking calcium and water metabolism. Abnormalities in this mechanism could potentially play a role in the pathogenesis of renal stone formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app