COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

A novel family of T-box genes in urodele amphibian limb development and regeneration: candidate genes involved in vertebrate forelimb/hindlimb patterning.

Development 1997 April
In certain urodeles, a lost appendage, including hand and foot, can be completely replaced through epimorphic regeneration. The regeneration process involves cellular activities similar to those described for embryogenesis. Working on the assumption that the morphological pattern specific for a forelimb or a hindlimb is controlled by different gene activities in the two limbs, we employed a mRNA differential display screen for the detection of candidate limb identity genes. Using this approach, we have isolated a newt gene which in regenerating and developing limbs reveals properties expected of a gene having a role in controlling limb morphology: (1) it is exclusively expressed in the forelimbs, but not hindlimbs, (2) during embryonic development its expression is co-incident with forelimb bud formation, (3) it has an elevated message level throughout the undifferentiated limb bud and the blastema, respectively, and (4) it is expressed only in mesenchymal, but not in epidermal tissues. This novel newt gene shares a conserved DNA-binding domain, the T-box, with putative transcription factors including the Brachyury (T) gene product. In a following PCR-based screen, we used the evolutionarily conserved T-box motif and amplified a family of related genes in the newt; their different expression patterns in normal and regenerating forelimbs, hindlimbs and tail suggest, in general, an important role of T-domain proteins in vertebrate pattern formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app