JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Effect of dietary calcium on urinary oxalate excretion after oxalate loads.

An experimental model that allowed differentiation between endogenously and exogenously derived urinary oxalate was used to assess the effect of different forms and doses of ingested calcium on oxalate absorption and excretion. In replication 1 (R-1), subjects participated in three oxalate load (OL) tests: baseline (OL alone), calcium carbonate (OL with concomitant calcium carbonate ingestion), and calcium citrate malate (CCM) (OL with concomitant CCM ingestion). The calcium salts each provided 300 mg elemental Ca. OLs consisted of 180 mg unlabeled and 18 mg 1,2[13C2]oxalic acid. In R-2, subjects participated in four OL tests: baseline (OL alone) and OLs administered concomitantly with 100, 200, or 300 mg Ca. Timed urine samples after the OL were collected at 2-h intervals for the initial 6 h and samples were pooled into 9-h aliquots for the remaining 18 h of the 24-h period. In R-1, 24-h mean exogenous oxalate decreased (P < 0.05) after the OL from 36.2 mg (baseline) to 16.1 mg (after calcium carbonate) and to 14.3 mg (after CCM) whereas endogenous oxalate remained relatively constant. Mean 24-h oxalate absorption decreased significantly from that at the time of the baseline treatment (18.3%) after both calcium carbonate (8.1%) and CCM (7.2%) treatments. In R-2, mean 24-h oxalate absorption was significantly lower after 200 (5.9%) and 300 (7.6%) mg Ca than after 100 mg Ca (9.1%) and the OL alone (11.3%). Concomitant meal ingestion significantly decreased oxalate absorption in the absence of dietary calcium but not in association with the 300-mg Ca treatment. The overall data provide definitive evidence that dietary calcium can reduce oxalate absorption and excretion. Calcium carbonate and CCM were equally effective in this regard and a minimum of 200 mg elemental Ca maximized this effect in conjunction with an oxalic acid intake of 198 mg.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app