Journal Article
Review
Add like
Add dislike
Add to saved papers

Genetic predisposition to drug-induced hepatotoxicity.

Drug-induced hepatitis is uncommon and generally unpredictable. Hepatotoxicity may be related to the drug itself, or to chemically reactive metabolites which can bind covalently to hepatic macromolecules and may lead to either idiosyncratic, toxic hepatitis or to immunoallergic hepatitis. There is now evidence indicating that genetic variations in systems of biotransformation or detoxication may modulate either the toxic or sensitizing effects of some drugs. Thus, the genetic deficiency in a particular hepatic cytochrome P 450 isozyme (CYP 2D6) is involved in per-hexiline liver injury. The deficiency in CYP 2C19 might also contribute to Atrium hepatotoxicity. Slow acetylation related to N-acetyltransferase 2 deficiency contributes to sulfonamide hepatitis. The genetic deficiency in glutathione synthetase may increase the susceptibility to several drugs including acetaminophen. A constitutional deficiency in another cell defense mechanism, still not characterized, seems to increase significantly the risk of hepatotoxicity with halothane, phenytoin, carbamazepine, phenobarbital, sulfamides and amineptine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app