Journal Article
Review
Add like
Add dislike
Add to saved papers

Changing concepts in the determination of valvular stenosis.

The cardiovascular system can be characterized as a series of chambers connected by tubes and orifices. The circulatory physiology of this system is governed by hydrodynamic laws. The first application of hydrodynamics to stenotic valve orifices was by Gorlin and Gorlin in 1951, with direct measurement of transvalvular pressure gradients in the catheterization laboratory. The relative imprecision of fluid-filled catheters was corrected by the introduction of high fidelity micromanometric catheters in 1978. Echocardiography, which directly measures blood velocity, currently provides an accurate and widely applied tool for hemodynamic evaluation. Measured changes in blood velocity can derive pressure gradients previously measured by cardiac catheterization. In the clinically important range of determinations, there is excellent correlation between echocardiographic methods and the Gorlin formula for calculating valvular stenosis. Although noninvasive evaluation of heart valve stenosis has become standard, the same physical laws apply as in the 1950s, and practitioners need to be aware of the limitations of the various methods of hemodynamic calculation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app