Add like
Add dislike
Add to saved papers

Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear.

This study evaluates the feasibility of growing tissue-engineered cartilage in the shape of a human ear using chondrocytes seeded onto a synthetic biodegradable polymer fashioned in the shape of a 3-year-old child's auricle. A polymer template was formed in the shape of a human auricle using a nonwoven mesh of polyglycolic acid molded after being immersed in a 1% solution of polylactic acid. Each polyglycolic acid-polylactic acid template was seeded with chondrocytes isolated from bovine articular cartilage and then implanted into subcutaneous pockets on the dorsa of 10 athymic mice. The three-dimensional structure was well maintained after removal of an external stent that had been applied for 4 weeks. Specimens harvested 12 weeks after implantation and subjected to gross morphologic and histologic analysis demonstrated new cartilage formation. The overall geometry of the experimental specimens closely resembled the complex structure of the child's auricle. These findings demonstrate that polyglycolic acid-polylactic acid constructs can be fabricated in a very intricate configuration and seeded with chondrocytes to generate new cartilage that would be useful in plastic and reconstructive surgery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app