Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Metabolic correlates of pallidal neuronal activity in Parkinson's disease.

Brain 1997 August
We have used [18F]fluorodeoxyglucose and PET to identify specific metabolic covariance patterns associated with Parkinson's disease and related disorders previously. Nonetheless, the physiological correlates of these abnormal patterns are unknown. In this study we used PET to measure resting state glucose metabolism in 42 awake unmedicated Parkinson's disease patients prior to unilateral stereotaxic pallidotomy for relief of symptoms. Spontaneous single unit activity of the internal segment of the globus pallidus (GPi) was recorded intraoperatively in the same patients under identical conditions. The first 24 patients (Group A) were scanned on an intermediate resolution tomograph (full width at half maximum, 8 mm); the subsequent 18 patients (Group B) were scanned on a higher resolution tomograph (full width half maximum, 4.2 mm). We found significant positive correlations between GPi firing rates and thalamic glucose metabolism in both patient groups (Group A: r = 0.41, P < 0.05; Group B: r = 0.69, P < 0.005). In Group B, pixel-based analysis disclosed a significant focus of physiological-metabolic correlation involving the ventral thalamus and the GPi (statistical parametric map: P < 0.05, corrected). Regional covariance analysis demonstrated that internal pallidal neuronal activity correlated significantly (r = 0.65, P < 0.005) with the expression of a unique network characterized by covarying pallidothalamic and brainstem metabolic activity. Our findings suggest that the variability in pallidal neuronal firing rates in Parkinson's disease patients is associated with individual differences in the metabolic activity of efferent projection systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app