Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Doxycycline treatment reduces ischemic brain damage in transient middle cerebral artery occlusion in the rat.

Agents that inhibit leukocyte adhesion including intercellular adhesion molecule-1 antibodies (anti-ICAM-1) have shown beneficial effects in experimental central nervous system (CNS) ischemia. Doxycycline inhibits leukocyte function in vitro by binding divalent cations and reduces spinal cord reperfusion injury. The authors used a clinically relevant model of focal CNS reperfusion injury to test whether treatment with doxycycline would reduce cerebral ischemic damage and improve functional outcome. Reversible middle cerebral artery occlusion was produced in adult Sprague-Dawley rats by advancing a filament into the internal carotid artery for 2 h. Animals received either i.p. doxycycline (10 mg/kg) (N = 13) or saline (N = 11) 30 min before ischemia, followed by 10 mg/kg every 8 h x 6. Both functional assessment (5 point neurologic scale) and infarct volume was evaluated at 48 h. Functional efficacy: doxycycline 0.5 +/- 0.2 (mean +/- SE) vs control 1.3 +/- 0.3 (p = 0.03). Infarct volume: doxycycline 56 +/- 18 mm3 vs control 158 +/- 44 mm3 (p = 0.03); This protective effect supports the role of doxycycline in reducing CNS reperfusion injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app