Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis.

Development 1997 November
Mesenchyme Fork Head-1 (MFH-1) is a forkhead (also called winged helix) transcription factor defined by a common 100-amino acid DNA-binding domain. MFH-1 is expressed in non-notochordal mesoderm in the prospective trunk region and in cephalic neural-crest and cephalic mesoderm-derived mesenchymal cells in the prechordal region of early embryos. Subsequently, strong expression is localized in developing cartilaginous tissues, kidney and dorsal aortas. To investigate the developmental roles of MFH-1 during embryogenesis, mice lacking the MFH-1 locus were generated by targeted mutagenesis. MFH-1-deficient mice died embryonically and perinatally, and exhibited interrupted aortic arch and skeletal defects in the neurocranium and the vertebral column. Interruption of the aortic arch seen in the mutant mice was the same as in human congenital anomalies. These results suggest that MFH-1 has indispensable roles during the extensive remodeling of the aortic arch in neural-crest-derived cells and in skeletogenesis in cells derived from the neural crest and the mesoderm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app