Add like
Add dislike
Add to saved papers

Plasmid-mediated resistance to expanded-spectrum cephalosporins among Enterobacter aerogenes strains.

Resistance to expanded-spectrum cephalosporins commonly develops in Enterobacter aerogenes during therapy due to selection of mutants producing high levels of the chromosomal Bush group 1 beta-lactamase. Recently, resistant strains producing plasmid-mediated extended-spectrum beta-lactamases (ESBLs) have been isolated as well. A study was designed to investigate ESBL production among 31 clinical isolates of E. aerogenes from Richmond, Va., with decreased susceptibility to expanded-spectrum cephalosporins and a positive double-disk potentiation test. Antibiotic susceptibility was determined by standard disk diffusion and agar dilution procedures. Beta-lactamases were investigated by an isoelectric focusing overlay technique which simultaneously determined isoelectric points (pIs) and substrate or inhibitor profiles. Decreased susceptibility to cefotaxime, ceftazidime, and aztreonam (MIC range, 1 to 64 microg/ml) was detected and associated with resistance to gentamicin and trimethoprim-sulfamethoxazole. All strains produced an inducible Bush group 1 beta-lactamase (pI 83). Twenty-nine of the 31 isolates also produced an enzyme similar to SHV-4 (pI 7.8), while 1 isolate each produced an enzyme similar to SHV-3 (pI 6.9) and to SHV-5 (pI 8.2). The three different SHV-derived ESBLs were transferred by transconjugation to Escherichia coli C600N and amplified by PCR. Plasmid profiles of the clinical isolates showed a variety of different large plasmids. Because of the linkage of resistance to aminoglycosides and trimethoprim-sulfamethoxazole with ESBL production, it is possible that the usage of these drugs was responsible for selecting plasmid-mediated resistance to extended-spectrum cephalosporins in E. aerogenes. Furthermore, it is important that strains such as these be recognized, because they can be responsible for institutional spread of resistance genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app