Add like
Add dislike
Add to saved papers

Microcirculatory studies of frostbite injury.

Frostbite represents a spectrum of injury ranging from irreversible cellular destruction to reversible changes seen after rewarming. These changes include increases in tissue edema, circulatory stasis, and progressive thrombosis leading to further tissue necrosis. For this reason, it is often difficult at the time of surgical debridement to determine the extent of frostbite injury. This delayed tissue injury is similar to that seen in muscle during ischemia/reperfusion injury. Muscle that initially appears viable on reperfusion may subsequently necrose due to collapse of the microcirculation. Adherent neutrophils have been specifically cited as important components in ischemia/reperfusion injury and have also been suggested to play a role in frostbite injury. We have used an intravital microscopic muscle preparation to study microcirculatory changes carefully in frostbite injury during rewarming. The right gracilis muscle of male Wistar rats is dissected free from its primary vascular pedicle and the rat is positioned on a specially constructed microsurgical stage. Temperature changes of the muscle are recorded. The prepared axial pattern flap is transilluminated with a microscope and projected on a video screen, allowing measurement of arteriolar diameters and changes in the numbers of stuck and rolling neutrophils before frostbite, during rewarming, and for several hours later. Cold silicone oil is used to freeze the muscle to -5+/-2 degrees C in 2 to 3 minutes and to hold this temperature for 5 minutes. The muscle is rewarmed with 42 degrees C normal saline placed directly on the muscle surface. Baseline vessel diameter and leukocyte counts in 100-mm segments of the microvasculature are recorded as well as at 5, 15, and 30 minutes, and at 1, 2, and 3 hours postrewarming of frozen muscle. Observations from our initial 11 animals show that reperfusion of the muscle following freezing is varied temporally and spatially, with circulation to most vascular segments restored 5 to 10 minutes after rewarming. In 9 of 11 animals we observed the shedding of "white clots" in small arterioles and venules occurring as soon as 5 minutes after thawing. In some instances shedding continued for as long as 1 hour after rewarming. Microvascular hemorrhage was widespread 1 hour following the thaw, but there was no significant increase in neutrophil adherence observed until 3 hours following rewarming. The exact nature of the vascular injury and the composition of the "white clots" are now being determined from ultrastructural studies. Blood flow in microcirculation stops during freezing, but small-vessel perfusion returns immediately on thawing. This suggests that the vascular architecture is maintained during the freezing and thawing. Unlike ischemia/reperfusion injury, neutrophil adhesion plays a smaller role in the early response to frostbite injury. The early microcirculatory observations seen after rewarming suggest progressive and severe perturbations in platelet function and fibrin formation that are significantly different from ischemia/reperfusion injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app