Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The effect of chloride concentration on human neutrophil functions: potential relevance to cystic fibrosis.

Recently, some investigators have observed elevated concentrations of chloride in the airway surface fluid (ASF) overlying respiratory epithelia from cystic fibrosis (CF) patients compared with ASF overlying non-CF epithelia. Others have shown that this elevated ASF salt concentration can inactivate human beta-defensin-1, an antimicrobial peptide secreted by respiratory epithelia. This could impair the primary epithelial defense against bacteria in the CF airway, thereby forcing a greater reliance on polymorphonuclear leukocyte (PMN)-mediated defenses. Pseudomonas aeruginosa (Psa) flourishes in the CF airway despite the presence of abundant PMN. We therefore investigated whether elevated ASF chloride concentration in CF might also compromise PMN function. We employed a cell-culture model in which halide concentrations and osmolarity were varied independently. We examined the effects of chloride concentration on three aspects of PMN function: recruitment of PMN to the airway (production of interleukin-8 [IL-8]), PMN antimicrobial activity (killing of Psa), and PMN clearance from the airways (apoptosis and lysis). We found that exposure to elevated chloride concentration increased PMN synthesis of IL-8, decreased PMN killing of Psa, and accelerated PMN apoptosis and lysis. In CF airways, elevated chloride therefore could contribute to the increased number of PMN recruited into the airways, the increased survival of Psa, and the increased quantity of toxic mediators released by PMN into the airways. These effects of elevated chloride on PMN function may provide another causal link between loss of cystic fibrosis transmembrane conductance regulator function and CF lung disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app