Add like
Add dislike
Add to saved papers

Strain-dependent differences in beta-sheet conformations of abnormal prion protein.

Strain diversity in the transmissible spongiform encephalopathies (TSEs) has been proposed to be determined by variations in the conformation of the abnormal, protease-resistant form of prion protein (PrP-res). We have investigated whether infection of hamsters with three TSE strains resulted in the formation of PrP-res with different conformations using limited proteinase K (PK) digestion and infrared spectroscopy. PrP-res isolated from the brains of hamsters infected with the hyper (HY), drowsy (DY), and 263K TSE strains yielded similar SDS-polyacrylamide gel electrophoresis profiles prior to PK treatment. However, after limited digestion with PK, the PrP-res from the DY strain exhibited a fragmentation pattern that was distinct from that of the other two strains. Infrared spectra of HY and 263K PrP-res each had major absorption bands in the amide I region at 1626 and 1636 cm-1 both prior to and after digestion with PK. These bands were not evident in the DY PrP-res spectra, which had a unique band at 1629-1630 cm-1 and stronger band intensity at both 1616 and 1694-1695 cm-1. Because absorbances from 1616 to 1636 cm-1 of protein infrared spectra are attributed primarily to beta-sheet structures, these findings indicate that the conformations of HY and 263K PrP-res differ from DY PrP-res at least in structural regions with beta-sheet secondary structure. These results support the hypothesis that strain-specific PrP-res conformers can self-propagate by converting the normal prion protein to the abnormal conformers that induce phenotypically distinct TSE diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app