Add like
Add dislike
Add to saved papers

Anatomy of the human internal superior laryngeal nerve.

Anatomical Record 1998 December
The mucosa of the larynx contains one of the most dense concentrations of sensory receptors in the human body. This sensitivity is used for reflexes that protect the lungs, and even momentary loss of this function is followed rapidly by life-threatening pneumonia. The internal superior laryngeal nerve (ISLN) supplies the innervation to this area, and, to date, the distribution and branching pattern of this nerve is unknown. Five adult human larynges were processed by using Sihler's stain, a technique that clears soft tissue while counterstaining nerves. The whole-mount specimens were then dissected to demonstrate the branching of the ISLN from its main trunk down to the level of terminal axons. The human ISLN is divided into three divisions: The superior division supplies mainly the mucosa of the laryngeal surface of the epiglottis; the middle division supplies the mucosa of the true and false vocal folds and the aryepiglottic fold; and the inferior division supplies the mucosa of the arytenoid region, subglottis, anterior wall of the hypopharynx, and upper esophageal sphincter. Several dense sensory plexi that cross the midline were seen on the laryngeal surface of the epiglottis and arytenoid region. The human ISLN also appears to supply motor innervation to the interarytenoid (IA) muscle. A detailed map is presented of the distribution of the ISLN within the human larynx. The areas seen to receive the greatest innervation are the same areas that have been shown by physiological experiments to be the most sensate: the laryngeal surface of the epiglottis, the false and true vocal folds, and the arytenoid region. The observation that the human ISLN appears to supply motor innervation to the IA muscle is contrary to current concepts of the ISLN as a purely sensory nerve. These findings are relevant to understanding how the laryngeal protective reflexes work during activities like swallowing. The nerve maps can be used to guide surgical attempts to reinnervate the laryngeal mucosa when sensation is lost due to neurological disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app