JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The thermal effect of monopolar radiofrequency energy on the properties of joint capsule. An in vivo histologic study using a sheep model.

The purpose of this in vivo study was to analyze the short-term tissue response of joint capsule to monopolar radiofrequency energy and to compare the effects of five power settings at 65 degrees C on heat distribution in joint capsule. In 12 mature Hampshire sheep, the medial and lateral aspects of both stifles were treated with monopolar radiofrequency energy under arthroscopic control in a single uniform pass to the synovial surface. The radiofrequency generator power settings were 0, 10, 15, 20, 25, and 30 watts (N = 8/group). The electrode tip temperature was 65 degrees C. Histologic analysis at 7 days after surgery revealed thermal damage of capsule at all radiofrequency power settings. The lesion's cross-sectional area, depth, vascularity, and inflammation were commensurate with radiofrequency power. Tissue damage was indicated by variable inflammatory cell infiltration, fusion of collagen, pyknosis of fibroblasts, myonecrosis, and vascular thrombosis, whereas synovial hyperplasia, fibroblast proliferation, and rowing of sarcolemmal nuclei demonstrated regenerative processes. This study revealed that radiofrequency power settings and heat loss through lavage solution play a significant role in heat distribution and morphologic alterations in joint capsule after arthroscopic application of monopolar radiofrequency energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app