JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Defective internalization and sustained activation of truncated granulocyte colony-stimulating factor receptor found in severe congenital neutropenia/acute myeloid leukemia.

Blood 1999 January 16
Acquired mutations truncating the C-terminal domain of the granulocyte colony-stimulating factor receptor (G-CSF-R) are found in about 20% of severe congenital neutropenia (SCN) patients, with this cohort of patients predisposed to acute myeloid leukemia (AML). In myeloid cells, such mutations act in a dominant-negative manner leading to hyperproliferation and lack of differentiation in response to G-CSF. However, why these truncated receptors are dominant in function over wild-type receptors has remained unclear. We report that ligand-induced internalization of truncated G-CSF-R is severely impaired compared with the wild-type receptor, which results in sustained activation of STAT proteins. Strikingly, in cells coexpressing both truncated and wild-type forms, the truncated receptors acted dominantly with regard to both internalization and sustained activation. Site-directed mutagenesis of the C-terminus showed that receptor tyrosines in this region were dispensable for internalization, whereas a di-leucine-containing motif in Box B3 played some role. However, loss of the di-leucine motif was not the critical determinant of the sustained activation status of truncated receptors. These data suggest that defective internalization, leading to extended receptor activation, is a major cause of the dominant hyperproliferative effect of truncated G-CSF receptors, which is only partially due to the loss of a di-leucine motif present in the Box B3 region of the full-length receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app