Add like
Add dislike
Add to saved papers

AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2.

Human kidney extracts heated to 60 degrees and devoid of hexosaminidase activity (2-acetamido-2-deoxy-beta-D-glucoside acetamidodeoxyglucohydrolase EC 3.2.1.30) stimulate more than 20-fold the hexosaminidase A-catalyzed degradation of ganglioside GM2 and of glycolipid GA2, the neuronal storage compounds of GM2 gangliosidosis. The stimulating factor of this extract, which is labile at temperatures above 60 degrees, is also present in kidney extracts from patients with infantile GM2 gangliosidosis having a deficiency of hexosaminidase A (Tay-Sachs disease, variant B) and a deficiency of hexosaminidases A and B (variant 0). Evidence is presented that this factor is defective in the AB-variant of infantile GM2 gangliosidosis which is characterized by an accumulation of glycolipids GM2 and GA2 despite the fact that the degrading enzymes, hexosaminidases A and B, retain normal activity levels. Thus, variant AB is an example of a fatal lipid storage disease that is caused not by a defect of a degrading enzyme but rather by a defective factor necessary for the interaction of lipid substrates and the water-soluble hydrolase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app